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Abstract

The deepest form of actuarial estimation problems remains the subject of classical life insurance
methodologies. A life insurance contract provides the payment of a defined sum assured contingent
upon the death of an insured life. Although in practice, death benefits is payable as soon as death
claim is advised and the legal requirement is completed, it is necessary to examine death benefits
which are paid at the end of policy anniversary of death, that is on the first policy anniversary of
effecting the policy after death. When the frequency of payments of an mthly life insurance benefit
scheme is infinite, the resulting life insurance function becomes continuously payable momentarily
throughout the year so that the total annual payment is equivalent to 1. This admittedly artificial
phenomenon has marked consequences in classical life contingency applications and at the same
time important as an estimation of benefits payments made weekly or monthly in life insurance
benefit program. Consequently, the approximation in the form most suitable for this purpose will
be based on Bernoulli power series. In this paper, the objective is to construct analytical
expressions for whole life insurance functions payable at different frequencies where the resulting
expression represents an adjustment to the yearly formula. Unless an analytical expression for the
survival function at age x is defined, approximation will be required to evaluate this expressions.

From the results obtained, we confirm asymptotically that }I(im AﬁK) = Ax.
—0©
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Introduction

A difficulty level in evaluating life insurance functions from their respective actuarial present
values where a life insurance scheme has been incepted under continuous setting is that the
probability of survival function for a life aged xmay not have an explicit representation. In
addition, the derivative of the governing force of mortality may not even exist everywhere.
Undoubtedly, there is a gap between the numerical estimations and analytical derivations of life
insurance functions. This accounts for the reason why moderate actuarial estimation is required to
address complex issues identified in theory to enable us generate closed form expressions which
serve as a reference point in a more complex mortality scenario.

Therefore, the theory of estimation is of crucial significance for life insurers to remain solvent and
meet the needs of all parties to the business especially the policyholders and stakeholders. A life
insurance is a contractual agreement under which the insurer having received premiums from the
insured legally accepts a risk from the insured by agreeing to pay benefit contingent on the
occurrence of a specified uncertain future event. In Hoem (1969), Hoem (1988), Christiansen
(2008) and Christiansen, (2010), the policies are usually long term contracts where the benefit is
defined at inception and are underwritten to cover mortality and longevity risks or have embedded
savings structure. A typical life insurance is the whole life insurance scheme where the benefit
is paid irrespective of the time of death of the insured (Bowers, Gerber, Hickman, Jones, Nesbitt,
1997); Dickson, Hardy & Waters, 2013).

According to Cox, Ingersoll and Ross (1985), Hacaritz, Kleinow and Macdonald (2024),
the projection of future cash flows under a life insurance scheme evolves as a result of the
requirements to develop key actuarial assumptions in form of technical bases for pricing and
satisfying valuation conditions. Following observations in Steffensen (2000), the actuarial
assumptions are developed in respect of future interest rates to discount cash flows to the present.
Following Sundt and Teugels (2004), the actuarial bases are derived in accordance with future
rates of mortality and future expenses as well as basis set in the policy to target profit.

In the classical insurance domain, a level of safety margins is defined when applying the

actuarial basis by setting the interest rate below the market level so that a safety margin is built
into the mortality rates. Ramlau-Hansen (1988), Ramlau-Hansen (1990) and Linnemann (1993)
argue that although life insurers offer various types of life insurance products, safety margins
could differ consistent with the kind of policy underwritten. The inclusion of margins is to ensure
that on the average, profit emerges over time.
The benefit payment functionally depends on the time of death of the insured or on his survival at
a predetermined term. The actuarial methodologies adopted in modelling the uncertainties within
the duration of an insured’s future lifetime is to consider the remaining lifetime random variable
of such life.

The future lifetime of a life aged X is defined by the continuous random variable T, and the

age at death is represented by T, +x .The cumulative distribution function of T, applied in
computing probabilities of death at time t is given by

F (s)=P(T,<s)=q, 1)
while the complementary function is defined as
S; (s)=1-F (s)=P(T,>s)= p, )
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To calculate probabilities at different ages given that a life survives to that age some years later

using T,; x>0, itisassumed that

R (s)=P(T,<s)= 0, =P(T, <x+s[T,>X) 3)

X

for all x>0 and T, is the future lifetime of a newborn. From the axioms of conditional

probability, we have

P(x<T,<Xx+s _
FTx (S): P(T>< Ss): ( P(T§>X) ): x+sq0p0x qo (4)

O+ P =1 (5)

the consistency condition for the survival probability requires that

X+$ poz(x po)(s px) (6)

Consequently, following observations in Dickson et al. (2013), the survival probability of a new
born surviving to age X-+sis the product of the survival probability from birth to age X and the

survival probability from age X to age X+S.

An important aspect of mortality is the force of mortality for (x) defined by
N H A_qx= H 1_A Px
ﬂx_!ﬂg A All—g)]( A j ")
defining the relationship between the integrated hazard function and survival probability defined
by S pX = exp(_IﬂX+SdSJ (8)
0

The force of mortality is the instantaneous mortality measure on a life aged x. Within a short

interval of time A, it is assumed that Ax u, =, 0,

The death density function of the future lifetime T, is obtained as follows.
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fTX(S)zé(qu)zé(_s pX):('uX+S)(S pX) %)

Following Dickson et al. (2013), we obtain an important formula that relates the future lifetime

distribution function in terms of the survival function and the force of mortality

(0, = [ 4P, 0 (10)
0

Under a life insurance policy, the payment of the benefit by the insurer and the payment of the
premium by the insured can either be in the form of a single amount or a life contingent annuity.
Lump sum premiums are paid at the beginning of the policy to guarantee risk coverage. The life
contingent single benefits and the life contingent annuities depend on the time of death of the
policyholder.
Following Anggraeni, Rahmadani, Utama and Handayani. (2023), the valuation of these types of
benefits and annuities is essential for the computation of premiums and examination of policy
values. The life contingent single benefit is a function of the time of death that is modelled as a
random variable. Its present value depends on the chosen actuarial basis. For different actuarial
bases, the distribution of the present value can be derived while its actuarial present value and
other moments can equally be obtained.

The present value function of a whole life insurance function is given by €™ while its

actuarial present value is

Ac = j €% (4 Py ) 1,05 (11)
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Cash flows could occur during the fraction of a year, as for example monthly or quarterly.

Considering a fraction of a year %; n>1, where n can be 12 or 4 corresponding to months or
quarters and defining the curtate future lifetime random variable as
m_1
K" = HLnTX | (12)
where |__| is the floor function. In this case, the contingent single benefits can be obtained in

discrete time at that fraction of the year where v = %and «11 dy 1S the probability probability

nin

that the life aged X survives % years and then dies in the next % years. The present value

1
n)+

(my A . .
function of whole life insurance function is given by v " while its actuarial present value is

AP Qz“(vknﬂj(

k=0

1qx] (13)

n

Kk
n

Methodology

When life assurance product is designated as AEK), then 1 unit of benefit should be paid % of year
after insurance period s where sis increased at intervals of % within 0<s< Q. AsK — oo,

AEK) —>'E&- We then apply Euler-Maclaurin model on the kthly payable whole life insurance

. alK Y . . . .
benefit Ai )to obtain A, . We define the following nomenclature consistent with Bowers et al.,

1997) as follows

Let a4 define the differential operator.

ds
A, be the differencing at interval s of 1
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W =% be the summation operator at interval of 1 to infinity

¥ pe the summation operator at interval of ithat is {O133 K—_lLK—H} to
K K K K K
infinity
o is the differencing operator in the interval %
K d
(14+4)=(1+0) =exp(£j (14)
1
Obtaining g in (14) we obtain
-1 -1
1| 8 1 1(1) 1| 8
KYK == —|eKkas 1| =YK = _ == |- ~|gKds _1 1
2 o { } z Ko Klo) K (15)
Observe that
1d (1j d”
K ds 2 K )ds"
TR I R Ty (16)
(ede _1J n=0
where B, are the Bernoulli numbers
1d .
K_dszﬁ(i] JB(1d ) Bf1d") Bf1d) B1d®
1d 0!\ Kds N Kds') 21\ Kds*?) 31{Kds®) 4l Kds’
eKdS _1
(17)
B(1d) Byf1d° B.(1d
T2 | e et oo
51\ K ds 6! K ds ri{ Kds
Let
1d
=— 18
Y =% ds (18)
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R
Br _|:dym (ey _1):|y_0 (19)

il Y oim[ L)
B, = Iylgg(ey——lj = Iylgg(ey ) =1 (20)

(21)
—_vaY _pY —V — —
:||m( ye —¢€ ]an(y—j:—l
y—0 e y—0 2 2
2 3 4 5
e’ =1+ y+y—+y—+y—+y—... (22)
21 3! 41 5!
Subtracting 1 from both sides (22)
2 3 4 5
g’ —1:y+y—+y—+y—+y—... (23)
21 3! 41 5l
Dividing both sides by y , we obtain
y _ 2 3 4
¢ l=1+l+y—+y—+y—... (24)
21 3! 41 5l
2 3 4
Let U :l+y_+y_+y_+m (25)
21 3! 41 5l
y_
el v (26)

Now observe that the half-angle hyperbolic cotangent function is given by

y ooy Y
2 2 2 QY y _
2 2 22 1 2 2e'-1 2\e-1 e-1) 2 2¢"-1 2 &-1
ez —e e
This is the reciprocal of both sides of (24) and is defined in terms of hyperbolic cotangent.
hence
YeothY Y- _Y (28)
2 2 2 e'-1

20



Ogungbenle et al./ Journal of Technological Sciences (JTS) Volume 2, Issue 1, 2025

By definition,
y ooy
y ez 4+e? y oy
cosh = 2 a2
YoothY =Y 2 _ y2 :ey+ey (29)
2
Expanding the bottom bracket and simplify
Yeothd =
SO OREHEHIE AR
1M 2 21\ 2 3N 2 41 2 51\ 2 61\ 2
s (g O SC(Y  f
(zj mo2) 210 2) 3 2) 4 2) s 2) (2
2 1 2 3 4 5 6
1+1(yj +1(y +1(yj +1(y) +1(y) +1(y +...+
1 2 21\ 2 3N 2 41\ 2 51\ 2 6!\ 2
TSGR SR O CIR SIS
M 2 210 2 31 2 410 2 51 2 6!\ 2
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Xcothlz
2 4 6 2 4 6
1+1(y +1(y) +1(yj +...+1+1(—y] +1(—y) +(—yj +... [(32)

( j 2l2) 4al2) 612 210 2) 41 2 2
2 1 3 5 1 5

1(yj +1(y) L1 y) N +[yj +1(y) 1m _

1m 2 312 51 2 1 2 32 51 2

2 4 6
2+2><21'(;/j +2><i|(gj +2><61|(;/j +...
%coth % = (%) — —3 5 (33)
2x1(y] +2x1(yj +2x1(yj +..
1 2 31 2 51 2

Dividing the numerator and denominator of the right hand side by 2 simplifies to

1 2 1 4 1 6 1 8 1 10
+zu@ *4@ *a@ +8'@ +10'@ o

1
y y_(yj
=coth==| =
2 2 2 3 5 7 9 11
BEREREAEAsAE
3 2) "sil2) "7il2) Tal2) T1ml 2

2

v, thy 1(1)2+1(zj“+1(1)6+1(1)8+1(1)1°}
2 21\ 2 41\ 2 oI\ 2 8\ 2 101 2
(yj (35)
2
1(yj5+1(yj7+1(ng+1(Vj“+...
' 5' 2 71\ 2 oI{ 2 111\ 2

Dividing the numerator and denominator in (35) by % , We obtain

2 4 6 8 10
Y oth Y — 1+1(1) +£(zj +1(z) +1(1) +L(1)
2 2 211 2 41 2 6!\ 2 81\ 2 101\ 2

(36)

X 2 4 6 8 10
FARAEREARGE
3N 2 51\ 2 7\ 2 QI 2 111\ 2
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L (V) (U (U (V) (U @)

zcothz{ui[zfAH“AHZAHZLHNJ

20| 22 T2 Tel 2] Teil 2] T101 2

(AT AT AT Ay

{1 (3!{2} +5!{2} +7!{2_ +9!{2} +j (38)
- +O(y1°)

AT T AT Tl e

After simplifying this equation, we obtain

2 4 6 8
zcothz:1+(1jy_+(_ijv_+(L)V_+(_LJV_+,_, (39)
2 2 6) 2! 304! (42)6! 30) 8!

Observe here that the there is no term containing y* in equation (39)

But
B 5 5 (2 8
[e¥—1] %(m!jy (mjy v T v+ ar)’ "sr)?
R Gl

y + y + y + y +.
Since there is no term containing y* in equation (39) we must add (
2 4 6 8
YeothY - (1jl=—(ljl+1+(1jy—+(—i)y—+(ijy—+[—i)y—+... (41)
2 2 \(2)1 2)1! 6) 2! 30)4! (42)6! 30) 8!

Comparing co-efficient of powers of y in equations (39) and (40), we have

(40)

—%) from both sides

B _,B_ 1 _18 18 4B_ 1B ,B_ 1
0! 1! 2x1  2'21 1231 4l 720' 51 6! 30240’ 42)
B, 1

81 30x40 320
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The odd Bernoulli numbers all vanishes except B, thatis B,, ; =0 for r >2. We use the symbol

(iij to mean (i Dj where D" = d
K d

K ds "
d 0 1 2 4 6
K_dszi(ij_l(i]+1[d j_ 1(0' j+ L (d)
14 0l\Kds) 2\ Kds) 12\ Kds) 720\ Kds/ 30240\ Kds
eKdS_l
(43)
e ) * 7o )
1209600\ Kds ) 47900160\ Kds
.y d
Dividing throughout by ——
ividing throughou yde
d 1£dj°
1 Kds _ O Kds _1+i(d jl_ 1(d T
d | 1d d 2 12\ Kds) 720\ Kds
Kds [&°° 1 Kds (44)
o )~z i) " v )
30240\ Kds ) 1209600\ Kds ) ~ 47900160\ Kds
d
©__ 1  Kds
KX = ) (45)
l<S|:eKdS_1j|
Kz(rozi_hi( d j 1 ( d )
d 2 12(Kds) 720\ Kds
Kds (46)

e
30240\ Kds ) 1209600\ Kds 47900160 \ Kds
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s _ 1 _i+1(djl_1(dj3
(de) 2K 12K\ Kds) 720K\ Kds

1 Kds (47)

. 1(d)5_ 1 (d)7+ 1 djg
30240K | Kds ) 1209600K  Kds ) ~ 47900160K | Kds

n

and substituting K =1 in (47)

Note that (ij =D"= d
ds ds"

1 3
s __1 _1+i(i) _L(EJ
(dj 2 12\ds) 720\ ds

ds (48)

abolt) -]l
30240\ ds/ 1209600\ ds 47900160\ ds

seo_sw__1 1 1 (d L(gj;(i)
k 0 2K 12K*\ds) 720K*(ds) 30240K°\ds
Kds
1 dY 1 dY 1 1 1(dY
| = |t = | | (49)
1209600K® ( ds )~ 47900160K™ \ ds ( d j 2 12\ ds
ds

(8-l (s -sonl3]
720\ ds 302401\ ds 12096001 ds 47900160\ ds

Kds

1 1 3

st_yo__ 1 1 +1_L+L2(ij _i(i) +L(i)

K 4 (dj 2 2K 12Kk*\ds) 12\ds) 720lds
ds

(&) (] whela] ls] @
720K \ ds 30240K® \ ds 30240\ ds 1209600\ ds
;[g);[g)_;(gj

1209600K?® \ ds 47900160K™ \ ds 47900160\ ds
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1 4 3 6 5
) (1)_K—1+1—K2(dj+K —1(d) L 1K (d)
2 720K* 30240K°

T 2K 12K? \ds ds ds
, o (51)
K® -1 (dj 1-K™ (dj
| — | +t———| —
1209600K® \ ds 47900160K™  ds
H : Cx+s H
We insert the function D in (51) throughout as follows
Z(K) & _Z(l) Cx+s =K_1 Cx+s +1_K2 ECXJrS 1+ K*-1 ECXJrS ’
D, D, 2K | D, 12K?* | ds D, 720K*{ ds D, (52)

+ 1-K® icms i + K®-1 icms 7 + 1-K® icms 9
30240K° | ds D, 1209600K® { ds D, 47900160K* { ds D,
Since the integral A = Te““ﬂm (,P,)ds is difficult to solve by direct integration, we first
0

obtain the derivatives of the discounted death function C,,. in equation (52) and thereafter

estimate the whole life insurance R . Both the discounted deaths and number of deaths are defined
as follows

C, =dy*; d =1 -1, (53)
where C, e C" and C, is the discounted deaths. Replacing X by X+S in (53)

C _ V><+1+stJrS _ e(lnv)(x+1+s)dx+S (54)

X+S

The number of death cases at age X+5 is given by
dx+s = (Ix+s - Ix+1+s) (55)

Cpoe =V, =exp[ (INV) (x+1+5) ]d, o = (Le —ps ) xexp[ (INV)(x+1+5) | =

(IX+S exp| (INV)x(x+1+5) |15 exp[ (InV)x(x+1+ s)]) (56)

Finding the difference between omega age (2= and age 0, we have

26



Ogungbenle et al./ Journal of Technological Sciences (JTS) Volume 2, Issue 1, 2025

Q Inv)(x+1 -0)(x+1 X+1
[Cx+s ]0 = [Cx+s ]S:Q _[Cx+s ]S:O = _e( N )dx = _e( ! )dx =-V dx = _Cx (57)
where Q is the limit of life

Q:Sup{gew

F. (¢) sl} (58)

Differentiating (56) with respect to s once and observing that

d

Elms - _:ux+s|x+s (59)
8 e =L~ xexp{(InV) (x+145)} |-

dS X+S dS X+S X+1+S (60)
+(L,e —IX+1+S)%exp[(ln V)(x+1+s) |+exp[ (Inv)(x+1+ s)]%(lX+S )

d

3G = (s = losis ) (INV) exp[ (INV) (x +1+5) | (61)
—eXpI:(an)(X-i-l-f— S):'[:ux+s|x+5 _lux+l+s|x+l+s]

d

15 Crs = s (Inv)exp[ (Inv)(x+1+s)] (62)
_exp I:(an)(X+1+ S):'[:ux+s|x+s _:ux+l+s|x+1+s]

d

EC”S =(Inv)exp[ (Inv)x(x+1+s) |xd,,. —exp[ (INV)x (X +1+5) | (schesc ) 63

+exp| (INV)x(x+1+5) | (£.1chnre )

[d . T [(Inv)exp[(lnv)x(x+l+s)]xdm—exp[(lnv)x(x+1+s)](umlm)]

ds | +exp| (INV)x(X+1+5) |( yz,chonss) o g
{(In v)exp| (Inv)x(x+1+s) |xd,, —exp[ (INV)x (X+1+5) | (£4,chyes )]
+exp (INV)x(X+1+5) |( Lyr,chonss) L
d. T (Inv)exp| (Inv)x(x+1) [xd, —exp[ (Inv)x (x+1) ] (1, )
{ds le - [+exp[(lnv)x(x+1)](/,zx+llx+l) ] ©9)
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Taking the second derivative using (63) and noting that

d Cpoc =(Inv)iCX+s +§[9Xp[(|”v)x(x+l+s)}(%IHSH

ds? ds S

_%{exp[(mv)x(ﬂus)](%IMH

(66)

(InV)C,., +exp| (Inv)x(x+1+ s)](%lmj

- _exp[(unv)x(x+1+s)](%|X+1+Sj '
(%Im)%exp[(ln V)x(x+1+s) |+exp[ (Inv)x(x+1+ s)]%(%lm] (67)

_(%Ix+l+sj%exp[(ln V)x(x+1+s) |—exp[ (Inv)x(x+1+ s)]%[%lxmsj

dZ

457 ©

X+S

(INV)C,,, +exp[ (Inv)x(x+1+ S)J(%Imj
—exp| (Inv)x(x+1+s)] (% Ix+l+sj

+(Inv)exp[ (Inv)x(x+1+ s)](%lmj%xp[(ln V)x(X+1+ s)][:—;lmj (68)

2
STC”S =(Inv)

~(Inv)exp[ (Inv)x(x+1+ s)][%lx+l+sj—exp[(ln V)x(x+1+ s)][:—;lmﬁj

d2
ds?

—2(Inv)exp[(|nv)><(x+1+s)](%IMHj (69)

C,.. =(Invyc, . +2(Inv)exp[(|nv)><(x+1+s)](%Imj

+exp[(|nv)x(x+1+s)][j—;|x+sj_exp[(|nv)x(x+1+s)](:_;ux+l+sj

d? 2 d
157 Crs =(Inv)’C,,, +2(Inv)exp[(|nv)><(x+1+s)](£Imj

(70)

2

~2(Inv)exp[ (Inv)x(x+1+s)] (% Ixmsjjtexp [(Inv)x(x+1+ s)]%(lX+s ~lns)
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d? 2 d
ECX+S =(Inv)" C,.. +2(Inv)exp[ (Inv)x(x+1+ S)]E(lxﬂ L) -
d2
+exp| (Inv)x(x+1+ S)]E(LHS L)
d? 2 d
157 Ces =(Inv) CHS+2(Inv)exp[(|nv)><(x+1+s)]£dHs -
dZ
+exp[(|nv)><(x+1+s)]de+s
2 d
{d_zc T: (Inv) CM+2(Inv)exp[(|nv)x(x+1+S)J(Edmj
as 0 +exp[(|nv)><(x+1+s)](;j—zzdX+S
3 ; =0 (73)
) (Inv) CH+2(Inv)exp[(|nv)x(x+1+S)J(Edm]
d2
+exp[(|nv)><(x+1+s)]@dX+S B
o |(Inv)’C +2(Inv)exp[(|nv)x(x+l)](id j
dZ X dX X
|:E x+s:| == (74)

0 +exp[(|nv)x(x+1)]d—):2dx

The first term will be zero because both C and d are all functions of |, which also vanishes at

d d
s=Q ;| —d =—d 75
|:dS X+S:|SO dX X ( )

Taking the third derivative

d? 2 d d d
33 Cres =(Inv) ECm+2(Inv)${exp[(lnv)x(x+1+s)](£dx+sﬂ

d d?
+£{exp[(lnv)x(x+1+s)]gdm}

(76)
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L (inv 2{(Inv)exp[(lnv)><(x+1+s)]xdX+S —exp[(lnv)x(x+1+s)](yx+slx+s)}
T e (Inv)x(x245) ()

+2(Inv){((;jsdx j:sexp[ Inv)x (x+1+s)]+exp[(|nv)x(x+1+s)](§2d j} @

d? d d?
{Ed X — exp[ Inv)x x+1+s)]+exp[(Inv)x(x+1+s)]de+s}

& (inv 2{(Inv)exp[(lnv)><(x+1+s)]><dx+s—exp[(lnv)x(x+1+s)](yx+slx+s)}
ast +oxp[(InV)x (x+1+5)](fresshs)

+2(In V)K% dmj(ln v)exp[ (Inv)x(x+1+s)]+exp[ (Inv)x(x+1+ s)]((;j—;dmﬂ (78)

+{(Inv)exp[(lnv)x(x+1+ s)](;j—;dX+s +exp[ (Inv)x(x+1+ s)]g—;dm}

& (inv 2{(Inv)exp[(lnv)><(x+1+s)]><dm—exp[(lnv)x(x+1+s)](yx+slx+s)}
ot Lrel(nv)x (e ) (s

+2(Inv)” exp[ (Inv)x(x+1+ s)](% dx+sj+3(ln v)exp[ (Inv)x(x+1+ S)J(%dm] (79)

3
+exp[ (Inv)x(x+1+ s)]%dX+S
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(In V)2 {( In V)e(lnv)(x+l+s) % dx+g _ e(Inv)(x+l+s) (,uerSIHs )}

(Inv)(xit+s) (,UX+1+SIX+1+5 )

d_3C Q: 2(||"IV) (Inv)(x+1+s)(id )+3(Inv)e(lnv)(x+1+s) d_zd
ds® ds *** ds?

S

3
+e(|nv)(x+1+s) % ”
L ds=Q

(In v)2 {(In V) e(lnv)(x+1+s) % dx+s . e(lnv)(x+l+s) (ﬂHSIHS )}

+e(|nv)(x+1+s) (,Ll I )

X+1+S" X+1+S

2
. +2(|n V)2 e(lnv)(x+l+s) (% dx+s j + 3(|n V) e(lnv)(x+1+s) (% dx+s]

3
+e(|nv)(x+1+s) d

E X+
L ds=0 (80)

(In V)2 {(In V) e(lnv)(x+1) % dx _e(lnv)(x+l) (,UXIX )}

+e(|n V)(X+l) (:ux+1| X+1 )

@ T —— oy [ 07
17 Ces | =~ +2(Inv)’ (”V)(”)(&dxl+3(lnv)e )l Pkl (81)

3
Ll d_3 X
dx

summing up the discounted death from zero to the limit of life (2, we have

ii(") i% K_l{cms}g +(1_K2)|: 1 d C)(ﬁ}o‘
s=0

D, & D, & %" 2K | D, 12K* | D, ds ,
v (82)

substituting for the derivatives in (82) but ignoring higher order derivatives than 3 gives
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D, 5 D, s=0 2K | D,
(Kz _1) i 1 {(Inv)e('”")(x*l) xd, _ i) (/uxlx)}
12K? | Dy [+e™00 (1 1)
i Inv)e™) o g _ am(e) I ]
(Inv)z {( (|nv))(x+1) o (1)
+€ (/ux+1|x+1)
K*-1 2
_q i +2(|n V)2 e(lnv)(x+1) (i dx]+3(|nv)e (Inv)(x+1) d d
720K | D, dx dx?
+e(lnv)(x+1) d_s d (83)

ax®

Following definition in Bowers et al. (1997), the discrete whole life insurance whose benefit is

payable at the end of the next anniversary period is defined as

ZCM (84)

xSO

Consequently, the K-thly life insurance benefit is given as

A 1 i (85)
D, &
Dx 12K2 D, +e(|nv)(x+l) (,ux+1|x+l)

(In V)2 {(In V) e(Inv)(x+l) % dx . e(Inv)(x+l) (,Ux|x )}

+e(|n V)(X+l) (:ux+1| X+1 )

(86)

—_—
A
N
|
[HY
~
=

2
- +2(Inv)” g™y (idxj+3(lnv)e (mxe) | G —d,
720K* | D ix i

3
Inv x+l d d

+e dX3 X
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A(+1(K) — A<+l _ K _1|: C><+1 :|_ ( K2 _1> [ 1 {(In V)e(an)(X+2) x dx+1 _e(an)(X+2) (lux+1|x+l )}]

2K D”l 12K i DXH +e(InV)(X+2) (/u><+2|x+2 )
_ (I )2 {(In V)e(|nv)(x+2) % dx+1 _ e(Inv)(x+2) (luxﬂlx+l )} -
nv
+e(InV)(X+2) (:ux+2|><+2 )

(87)

d d?
= 112(Inv)* e (—d j+3 Inv)e™2 | =g
720k* | o, ) 5 G | +3(InV) 17 e

3
L alnv)xs2) d

dX3 X+1

w0 Ko ] (K] o [ -8
w2 2K | Dy, ] 12K | Dy |4+e™09 (g 1 )
K | 2{(Inv)e(lnv)(x+3) de+2 _e(an)(X+3) (/ux+2|x+2)} ]
nv
( 4 ) +e(lnv)(><+3) (ux+3|x+3) (88)
K"-1 1 2 _(Inv)(x+3) d (Inv)(x+3) d2
B o el R ) Ol C2
+e(|nv)(x+3) d_3 d
dX3 X+2
Result

As an immediate consequence from the results obtained in equation (86), we can take the limit as

K tends to infinity in (86), we obtain the continuous whole life insurance. Following Neil (1979),

lim AX) = A« and consequently,

K—w
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() l_i c
im A ~fim & ~tim—K | &
1 1)\
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i Inv)(x+1 Inv)(x+1 ]
(Inv) (Inv)e™" s sed —eM™I (41
(l 1 j +e(InV)(X+1)(/Jx+llx+1)
: _W 1 2 _(Inv)(x+1 d Inv)(x+1 d2
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_ Inv e(Inv)(x+1) d _e(lnv)(x+l) I ]
Ax=&—l{&} 1 [i{( ) *Hx ('ux X)

2| D, 12 D, |4e(m0x) (ﬂx+1IX+1)
] Inv)e™#) o g _ M) () -
(Inv)z{( <'n3><x+l> " .
+e (Hhaben)

(91)

2
B +2(Inv)2e('”v)(”l)(idXJ+3(Inv)e('”V)(“l) d—de
720| D dx dx

3
el d_3 X
dx

This is the continuous whole life insurance for a life aged X
Furthermore, from the results obtained in equation (86), we can value an increasing whole life
insurance as the aggregate of the deferred whole life insurance schemes with deferred periods

0,1,2,3,... years and the sum is unity so that the death benefits in the rthyear becomes (r +1).
This reasoning applies irrespective of whether the death benefits is payable at the moment of death

or at the end of the %th year of death or at the end of year of death.

A(K)iﬂ + b (1+ i)_l A(K)Lxﬂ + 2P (l+ i )_2 A(K);z:ﬂ +

(K) T pX (1+ i)_l A(K);rl'ﬂ T pX (1+ i )_2 A(K)iJrZ:ﬂ +
(1) = toop (L) A+ 52

+

+

Now consider each row, we have

('A(K))X =AY+ p, (L+ i)_l(A(K)lmﬂ P (L) A gy P (L) A +)

+, Px (1+ i)_z (A(K)l

x+2:]

1 2 (93)
+ Pypp (1+1) AR + P (LH1) A(K)1X+4:ﬂ+---)+---

x+31]

(1)) = A+, p, (1+i) " A+, p, (1) A% (#9)

35



Ogungbenle et al./ Journal of Technological Sciences (JTS) Volume 2, Issue 1, 2025
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Discussion

The derived models generalize and unify existing actuarial formulations by incorporating an
analytically rigorous estimation technique which extends beyond the traditional commutation
functions approaches. However, the closed-form expression derived captures payment frequencies
greater than one such as semi-annual, quarterly and monthly, resolving the problems of estimating
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act present values under non-annual payment assumptions. The Euler-Maclaurin expansion offers
a smooth estimation to the sum of discounted probabilities over finely divided intervals, ensuring
higher accuracy compared to the standard actuarial linear interpolation methods (uniform
distribution of death assumption). The continuous whole life model derived through the Euler-
Maclaurin series accommaodates the limiting behavior of frequent payments as the interval tends
to infinity. The resulting expression provides a tractable actuarial model, closely aligned to the
analytical underpinnings of continuous-time life insurance mathematics and offers a basis for
analytic comparison against more discretized methods.

The model for increasing whole life insurance, where the benefit due increases linearly over time,
is particularly worrisome due to its analytical intractability. The application of the Euler-Maclaurin
series enhances a tractable estimation to what would otherwise involve recursive methods. The
derived expressions provides both analytical insight for practical opportunities application in
product pricing and reserve estimation in life insurance products developments with benefit
innovation characteristics.

Although market data is unavailable for direct numerical validation, the theoretical correctness of
the results is supported by their derivation from the first principles and their internal consistency
when compared with linear interpolation. For instance, when simplified under certain constraints
(e.g. constant force of mortality or annual payments), the new models reduce to classical results,
thereby reinforcing their validity.

The basic contribution of this paper lies in the derivation of these expressions and in demonstrating
that the Euler-Maclaurin series, traditionally applied in numerical and analytical mathematics, can
be efficiently deployed to the domain of actuarial mathematics for deriving advanced life insurance
models. This analytical innovation widens the theoretical depth available to actuaries and lays the
foundation for further research in estimating life contingency functions under complex payment
and benefit structures.

Implications and Adequacy of the Derived Expressions

The implication of these results lies in their ability to enhance both the precision and computational
efficiency of life insurance valuation. The multi-payment frequency model accounts for more
realistic premium payment frameworks (monthly, quarterly or weekly), which are common in
practice. Traditional actuarial models usually depend on estimations such as uniform distribution of
deaths assumptions which assume annualized payments, leading to discrepancies. The closed-form
expressions derived here eliminates the need for such estimations and aligns the model more closely
with actual insurance contracts.

The continuous life insurance model provides exact limiting conditions of the discrete
formulations, accommodating the behavior of infinitesimally small payment intervals. This is
especially important in theoretical analyses, reserve computations under Solvency Il or IFRS 17
frameworks, and in high-precision pricing conditions. The increasing whole life insurance model
enables valuation of products where benefits increase linearly over time, which are commonly
applied to hedge inflation. In the past, such products usually employed iterative numerical
methods. The availability of a closed-form expression markedly ease-out implementation and
sensitivity analysis.

Collectively, these tools provide enough and highly accurate technique for estimating the actuarial
present value for different whole life insurance products, especially in theoretical or high-precision
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computational frameworks. By eliminating the need for summation over life contingency functions
or numeric integration, they enhance the speed and reproducibility of actuarial computations.

Evidence Supporting the Adequacy of the Derivations

Although empirical validation using real-world mortality data and interest rate data were not
conducted due to data unavailability, different lines of theoretical evidence support the validity
and adequacy of the models. The analytical rigour involved in the derivations were based on the
Euler-Maclaurin formula, which is a well-established technique of estimating sums by integrals
with quantifiable error bounds. This lends analytical robustness to the expressions. In particular
cases, such as annual payments, constant force of mortality or zero benefit escalation, the derived
models reduce exactly to well-known classical actuarial expressions. This consistency strongly
validates the generalizations proposed. The Euler-Maclaurin series provides known error bounds
under certain smoothness conditions of the mortality laws and interest functions. Consequently,
the models maintain a high level of accuracy even when data were not explicitly available,
provided that assumptions on smoothness hold. Symbolic and numerical comparisons under
hypothetical or constructed mortality laws will prove that the new models behave consistently with
established theoretical expectations (e.g., actuarial present values increase with age and benefit
size, and decrease with higher discount rates)

Conclusion

Life insurance estimations are essential based on two major reasons. The first reason evolves from
the gap between the numerical estimations and analytical analysis. While numerical analysis sheds
light on specified mortality scenarios, analytical techniques consider important properties and
behaviour in general cases. This includes the asymptotic behaviour of mortality functions as the
specified period of payment of benefits become large or infinitesimally small. The second reason
concerns the challenge of implementing the approximation schemes. This paper therefore
contributes in both directions as the results evince good understanding of such estimation
procedures. Consequently, we investigate the effect of the Bernoulli power series on the behaviour
of whole life insurance function in the long run. This method is important because we can generate
a closed form expression which serves as a reference point in a more complex mortality scenario.
The valuation of a life insurance policy still in force at any time s; 0<S<oo is essential to

assess the solvency of the business. Since life insurance policy is essentially a long-term contract
where the insurer accepts risk from the insured by receiving premiums and paying benefit when
the contingent future event happens, we need to predict future events based on estimation.
Therefore, some assumptions have to be made in respect of the variables of interest defined as the
actuarial basis because life insurance policies depend on death or survival of the insured life in
line with the economic and financial environment as premiums have to be invested to pay future
benefits and on any other variables considered in the contract. However, with the emerging and
sophistication of financial market in connection to the securitization of life insurance risk as an
option in downplaying the traditional exchange of risk through reinsurance contracts, it becomes
necessary to employ finance principles for the computation of life insurance premiums. Future
work may include numerical validation of the models once suitable mortality and financial data
become available, as well as extensions to incorporate stochastic interest rates or mortality
improvements. Nevertheless, the results achieved here represent a significant theoretical
advancement and contribute novel insights to the body of actuarial literature.
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Recommendation
Insurance business is a risky business in terms of benefits paid out. In order to protect the life
insurers from one-off pay out, the above model can be employed to compute the insured’s benefits

as agreed to, in the policy conditions.
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